3.877 \(\int \frac{x^{-1+3 n} \left (a+b x^n\right )^2}{c+d x^n} \, dx\)

Optimal. Leaf size=118 \[ \frac{c^2 (b c-a d)^2 \log \left (c+d x^n\right )}{d^5 n}-\frac{c x^n (b c-a d)^2}{d^4 n}+\frac{x^{2 n} (b c-a d)^2}{2 d^3 n}-\frac{b x^{3 n} (b c-2 a d)}{3 d^2 n}+\frac{b^2 x^{4 n}}{4 d n} \]

[Out]

-((c*(b*c - a*d)^2*x^n)/(d^4*n)) + ((b*c - a*d)^2*x^(2*n))/(2*d^3*n) - (b*(b*c -
 2*a*d)*x^(3*n))/(3*d^2*n) + (b^2*x^(4*n))/(4*d*n) + (c^2*(b*c - a*d)^2*Log[c +
d*x^n])/(d^5*n)

_______________________________________________________________________________________

Rubi [A]  time = 0.303166, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077 \[ \frac{c^2 (b c-a d)^2 \log \left (c+d x^n\right )}{d^5 n}-\frac{c x^n (b c-a d)^2}{d^4 n}+\frac{x^{2 n} (b c-a d)^2}{2 d^3 n}-\frac{b x^{3 n} (b c-2 a d)}{3 d^2 n}+\frac{b^2 x^{4 n}}{4 d n} \]

Antiderivative was successfully verified.

[In]  Int[(x^(-1 + 3*n)*(a + b*x^n)^2)/(c + d*x^n),x]

[Out]

-((c*(b*c - a*d)^2*x^n)/(d^4*n)) + ((b*c - a*d)^2*x^(2*n))/(2*d^3*n) - (b*(b*c -
 2*a*d)*x^(3*n))/(3*d^2*n) + (b^2*x^(4*n))/(4*d*n) + (c^2*(b*c - a*d)^2*Log[c +
d*x^n])/(d^5*n)

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \frac{b^{2} x^{4 n}}{4 d n} + \frac{b x^{3 n} \left (2 a d - b c\right )}{3 d^{2} n} + \frac{c^{2} \left (a d - b c\right )^{2} \log{\left (c + d x^{n} \right )}}{d^{5} n} + \frac{\left (a d - b c\right )^{2} \int ^{x^{n}} x\, dx}{d^{3} n} - \frac{\left (a d - b c\right )^{2} \int ^{x^{n}} c\, dx}{d^{4} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**(-1+3*n)*(a+b*x**n)**2/(c+d*x**n),x)

[Out]

b**2*x**(4*n)/(4*d*n) + b*x**(3*n)*(2*a*d - b*c)/(3*d**2*n) + c**2*(a*d - b*c)**
2*log(c + d*x**n)/(d**5*n) + (a*d - b*c)**2*Integral(x, (x, x**n))/(d**3*n) - (a
*d - b*c)**2*Integral(c, (x, x**n))/(d**4*n)

_______________________________________________________________________________________

Mathematica [A]  time = 0.181159, size = 125, normalized size = 1.06 \[ \frac{d x^n \left (6 a^2 d^2 \left (d x^n-2 c\right )+4 a b d \left (6 c^2-3 c d x^n+2 d^2 x^{2 n}\right )+b^2 \left (-12 c^3+6 c^2 d x^n-4 c d^2 x^{2 n}+3 d^3 x^{3 n}\right )\right )+12 c^2 (b c-a d)^2 \log \left (c+d x^n\right )}{12 d^5 n} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^(-1 + 3*n)*(a + b*x^n)^2)/(c + d*x^n),x]

[Out]

(d*x^n*(6*a^2*d^2*(-2*c + d*x^n) + 4*a*b*d*(6*c^2 - 3*c*d*x^n + 2*d^2*x^(2*n)) +
 b^2*(-12*c^3 + 6*c^2*d*x^n - 4*c*d^2*x^(2*n) + 3*d^3*x^(3*n))) + 12*c^2*(b*c -
a*d)^2*Log[c + d*x^n])/(12*d^5*n)

_______________________________________________________________________________________

Maple [B]  time = 0.04, size = 236, normalized size = 2. \[{\frac{{b}^{2} \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{4}}{4\,dn}}+{\frac{ \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{2}{a}^{2}}{2\,dn}}-{\frac{ \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{2}cab}{{d}^{2}n}}+{\frac{{b}^{2} \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{2}{c}^{2}}{2\,{d}^{3}n}}+{\frac{2\,b \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{3}a}{3\,dn}}-{\frac{{b}^{2} \left ({{\rm e}^{n\ln \left ( x \right ) }} \right ) ^{3}c}{3\,{d}^{2}n}}-{\frac{c{{\rm e}^{n\ln \left ( x \right ) }}{a}^{2}}{{d}^{2}n}}+2\,{\frac{{c}^{2}{{\rm e}^{n\ln \left ( x \right ) }}ab}{{d}^{3}n}}-{\frac{{c}^{3}{{\rm e}^{n\ln \left ( x \right ) }}{b}^{2}}{{d}^{4}n}}+{\frac{{c}^{2}\ln \left ( c+d{{\rm e}^{n\ln \left ( x \right ) }} \right ){a}^{2}}{{d}^{3}n}}-2\,{\frac{{c}^{3}\ln \left ( c+d{{\rm e}^{n\ln \left ( x \right ) }} \right ) ab}{{d}^{4}n}}+{\frac{{c}^{4}\ln \left ( c+d{{\rm e}^{n\ln \left ( x \right ) }} \right ){b}^{2}}{{d}^{5}n}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^(-1+3*n)*(a+b*x^n)^2/(c+d*x^n),x)

[Out]

1/4*b^2/d/n*exp(n*ln(x))^4+1/2/d/n*exp(n*ln(x))^2*a^2-1/d^2/n*exp(n*ln(x))^2*c*a
*b+1/2/d^3/n*exp(n*ln(x))^2*b^2*c^2+2/3*b/d/n*exp(n*ln(x))^3*a-1/3*b^2/d^2/n*exp
(n*ln(x))^3*c-c/d^2/n*exp(n*ln(x))*a^2+2*c^2/d^3/n*exp(n*ln(x))*a*b-c^3/d^4/n*ex
p(n*ln(x))*b^2+c^2/d^3/n*ln(c+d*exp(n*ln(x)))*a^2-2*c^3/d^4/n*ln(c+d*exp(n*ln(x)
))*a*b+c^4/d^5/n*ln(c+d*exp(n*ln(x)))*b^2

_______________________________________________________________________________________

Maxima [A]  time = 1.38964, size = 259, normalized size = 2.19 \[ \frac{1}{12} \, b^{2}{\left (\frac{12 \, c^{4} \log \left (\frac{d x^{n} + c}{d}\right )}{d^{5} n} + \frac{3 \, d^{3} x^{4 \, n} - 4 \, c d^{2} x^{3 \, n} + 6 \, c^{2} d x^{2 \, n} - 12 \, c^{3} x^{n}}{d^{4} n}\right )} - \frac{1}{3} \, a b{\left (\frac{6 \, c^{3} \log \left (\frac{d x^{n} + c}{d}\right )}{d^{4} n} - \frac{2 \, d^{2} x^{3 \, n} - 3 \, c d x^{2 \, n} + 6 \, c^{2} x^{n}}{d^{3} n}\right )} + \frac{1}{2} \, a^{2}{\left (\frac{2 \, c^{2} \log \left (\frac{d x^{n} + c}{d}\right )}{d^{3} n} + \frac{d x^{2 \, n} - 2 \, c x^{n}}{d^{2} n}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^n + a)^2*x^(3*n - 1)/(d*x^n + c),x, algorithm="maxima")

[Out]

1/12*b^2*(12*c^4*log((d*x^n + c)/d)/(d^5*n) + (3*d^3*x^(4*n) - 4*c*d^2*x^(3*n) +
 6*c^2*d*x^(2*n) - 12*c^3*x^n)/(d^4*n)) - 1/3*a*b*(6*c^3*log((d*x^n + c)/d)/(d^4
*n) - (2*d^2*x^(3*n) - 3*c*d*x^(2*n) + 6*c^2*x^n)/(d^3*n)) + 1/2*a^2*(2*c^2*log(
(d*x^n + c)/d)/(d^3*n) + (d*x^(2*n) - 2*c*x^n)/(d^2*n))

_______________________________________________________________________________________

Fricas [A]  time = 0.235193, size = 197, normalized size = 1.67 \[ \frac{3 \, b^{2} d^{4} x^{4 \, n} - 4 \,{\left (b^{2} c d^{3} - 2 \, a b d^{4}\right )} x^{3 \, n} + 6 \,{\left (b^{2} c^{2} d^{2} - 2 \, a b c d^{3} + a^{2} d^{4}\right )} x^{2 \, n} - 12 \,{\left (b^{2} c^{3} d - 2 \, a b c^{2} d^{2} + a^{2} c d^{3}\right )} x^{n} + 12 \,{\left (b^{2} c^{4} - 2 \, a b c^{3} d + a^{2} c^{2} d^{2}\right )} \log \left (d x^{n} + c\right )}{12 \, d^{5} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^n + a)^2*x^(3*n - 1)/(d*x^n + c),x, algorithm="fricas")

[Out]

1/12*(3*b^2*d^4*x^(4*n) - 4*(b^2*c*d^3 - 2*a*b*d^4)*x^(3*n) + 6*(b^2*c^2*d^2 - 2
*a*b*c*d^3 + a^2*d^4)*x^(2*n) - 12*(b^2*c^3*d - 2*a*b*c^2*d^2 + a^2*c*d^3)*x^n +
 12*(b^2*c^4 - 2*a*b*c^3*d + a^2*c^2*d^2)*log(d*x^n + c))/(d^5*n)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**(-1+3*n)*(a+b*x**n)**2/(c+d*x**n),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{n} + a\right )}^{2} x^{3 \, n - 1}}{d x^{n} + c}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^n + a)^2*x^(3*n - 1)/(d*x^n + c),x, algorithm="giac")

[Out]

integrate((b*x^n + a)^2*x^(3*n - 1)/(d*x^n + c), x)